If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-28x-33=0
a = 7; b = -28; c = -33;
Δ = b2-4ac
Δ = -282-4·7·(-33)
Δ = 1708
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1708}=\sqrt{4*427}=\sqrt{4}*\sqrt{427}=2\sqrt{427}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-28)-2\sqrt{427}}{2*7}=\frac{28-2\sqrt{427}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-28)+2\sqrt{427}}{2*7}=\frac{28+2\sqrt{427}}{14} $
| 6v-9v=33 | | -1/n+14n/7n+3=6/7n+3 | | 7(2y+1)=561/4y-1/8) | | 35=14b | | 34=-5x+4 | | 1n=2n | | 2x-2(-x+2)=14 | | 2(3x-8)=1/4(24x-64) | | 6x–3x+4–2x=1x+2 | | 30a=25 | | -5/2=p/2 | | 4/(3w-3)=w/2 | | 9=27u | | 33j-1=3(11j-1) | | 5(2)=-4y=4 | | 3u=5u=32 | | 2x^2+14x-15614=0 | | -r/7=5 | | 5x+12=x+28 | | ∠B=3x+42∘ | | 74+x=136 | | x-0.25x=2620 | | 14+x=74 | | -4=6+n/5 | | 14-d-2d=-84 | | -4=n/5+6 | | (r+1.6)−8r=9.53(r+1.6)-8r=9.5 | | 16=1/2(7x-6) | | 7(2a+3)=16a+20 | | x-16=80 | | 5-x=-+5 | | 3(m-3=3m-9 |